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Compounds containing vinylcyclopropane fragments have re- Table 1. Enantioselective Cyclopropanation via Telluronium

ceived considerable attention because of their frequent occurrencelides’ COR' CoR

in biologically active compoundsas well as their utility as valuable @BPh@ 1) LITMP / HMPA . A

synthetic mtermedlate?sAIthough many synthetic methods have _Te/\l/sz 2) o~ COR 'R\\\-»&ﬁw g

been developetlasymmetric synthesis of multisubstituted vinyl- : R 2 3 R 4 R

Syi!opropangs withh k::gh Qiastericl)sele((:)tivitie?tﬁnd en?ntioselec- 1a:R'=H;R2=TMS; 1b: R' = CH; ; 2= H; 1e: R = H; R2 = H;

ivities remains a challenging problem. One of the most common - — —

methods is the transition metal-catalyzed cyclopropanatafn Entry Substrate 1 3/4 Yield(%)" Ee (%)
1 phx~CO2Me 1a 96/4 95 96

o-diazo carbonyl compounds with electron-rich alkenes. Sdzuki

and Taylof? found that these kinds of compounds could be prepared 2 P\ C02E 1a 98/2 97 97
from optically pure homoallylic alcohol via several steps. The 3 pMeoCeH > COMe 1a - 97/3 63 94
addition of allylic ylides LiM*CH CH=CHX to Michael acceptors 4 p-MeCaHy -C0Me 1,4 98/ 88 97
is al§o a convenlent_and atFractlve method because ylides are readily 5 pFaCCHT SC0Me 1o gg/1n 99 96
available and kM is easily recovered and reused. However,

practical methods for the highly enantioselective synthesis of  © pBrcH 0N 1a 9773 97 96°
multisubstituted vinylcyclopropanes via an ylide remain undevel- 7 f\}/\/COzEt 1a 94/6 81 97
oped probably due to the difficulties associated with both enanti- °© .
oselectivity and diastereoselectivity. Hanessian &dalscribed an 8 L0 Me la 92/8 37 94
efficient protocol for the preparation of these kinds of compounds 9 P OO la 9872 95 95
with excellent diastereoselectivity using a phosphonic amide as a 10 parcaH O 1a 99/ 94 99°
chiral auxiliary. Recently, Aggarwal et &lreported the reaction 11 p-CICgH; 00PN 1la 991 99 96
of a chiral silylated allylic sulfur ylide witho-aminoacrylate to 12 H3C(H20)3/\/COBUI 1la  982f 78 99
afford the desired vinylcyclopropane with 71% de and 75% ee. 13y cu,c) COCHICH 14 96/4 49 98

Very recently, our laboratory discovered an efficient method for 4

) / ) : _ o't 1a 991 83(23%) 93
the one-step enantioselective synthesis of 1,3-disubstituted-2- Ph N(CHz)s

silylvinylcyclopropanes with high diastereoselectivity via a sulfur 15 pBiCeH; 0P 1w 973f 81 9
ylide 8 However, this method is limited to the cyclopropanation of 16 pr Xy -COMe le 9377 42 95
p-aryl-a,B-unsaturated esters, amides, ketones, and nitriles. For 17" Ph)Mi/COZEt 1a - <1 -

p-alkyl-a,f-unsaturated esters such as methyl crotonate, low yields
are obtained due to the rearrangement of the sulfur ylide although 2 Determined by GC and/ofH NMR except noted® Isolated yield.

the enantioselectivity is high. In addition, there is still lack of access © Determined by HPLC using chiral stationary phases and3fdrThe

h ical i ith diff lati fi . absolute configurations were determined by X-ray diffractfdbetermined
to other optical isomers with different relative configurations. py Gc using chiral stationary phasé®etermined by GEMS. 9 Conver-
Despite their importance, few reports have appeared from the sion." The ester recovered in 98% yield.

literature on catalytic asymmetric synthesis of 1,2,3-trisubstituted
cyclopropanes with high enantioselectivity and diastereoselectivity 1, Table 1). Encouraged by the high diastereoselectivity and
via ylide routes. In this communication, we report an enantiose- excellent enantioselectivity, we evaluated a varietggfunsatur-
lective synthesis of trisubstituted cyclopropanes with controllable ated carbonyl compounds as substrates. As shown in Tablg-1,
diastereoselectivity and its catalytic version. unsaturated esters, amides, ketones were suitable substrates for the
Metzner found that &,-symmetric sulfur ylide is a good reagent reaction. The reactions afforded high diastereoselectivity and
for the preparation of diarylepoxides with high enantioselectiviies. enantioselectivity foy3-aryl- and -heteroaryl unsaturated esters
Very recently, they reported that the sulfur ylide could react with in high yields. This ylide also proved to be efficient for methyl
aldehydes enantioselectively to afford vinylepoxides and the crotonate, which gave 94% ee in moderate yield (entry 8).
enantiomeric excess ranged from 37 to 9®&onsidering that Noticeably, a,5-unsaturated ketones gave cyclopropanes in high
allylic telluronium ylides® are more reactivé than the correspond-  regioselectivity (entries-913). No epoxides were detected in this
ing sulfur ylides, we designed new telluronium sdlt® start our reaction. Additionally, whateveg-aryl- or f-alkyl substituted
study. These salts were readily prepared fror§59)-(+)-2,5- ketones were employed, excellent ee (up to 99%) and high
hexanedioldimethanesulfon&6e'2 Gratifyingly, it was found that diastereoselectivities were obtainedS-Unsaturated amides are
the saltla, after deprotonation by LITMP/HMPA in situ, could less effective substrates in this reaction. Although both the yield
react with methyl cinnamate to afford vinlcyclopropaBa with and enantioselectivity were high, the conversion of cinnamylamide
high diastereoselectivity (96/3/4) and 96% ee in 95% yield (entry  was low for reasons that remain unclear (entry 14). Unlike the sulfur
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Table 2. Controlled Reversal of Diastereoselectivities!?

BPhY COR’ COR'
T®/Y\R2 1) LDA/LiBr . A
b — .
4 b 2) g~ COR R A~ T K\RZ
S | 2 3 )l 4 &l

1a:R'=H;R?=TMS; 1e:R' =H; R*=H;

are improved. The facile synthesis of telluride, controllable dias-
tereoselectivity, and high enantioselectivity give this methodology
high potential for practical use in organic synthesis.
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Entry Substrate 1 3/4 Yield(%)*  Ee (%)°
1 P\ COMe la  4/96 98 81¢
2 pMeoCH S COME 08 87 80
3 pMeCHy COoMe 1la  3/97 98 83
4 pFRCCHYCOM . 703 98 68
5 N ACOMe 1a  18/82 70 43¢
(o]
6 o~ 1a  0/100 83 92
7 Py \-COMe e 7/93 58 61

aDetermined by GC and/ofH NMR except noted? Isolated yield.
¢ Determined by HPLC using chiral stationary phases and4fctThe
absolute configuration was determined by comparing the optical rotation
with that of the known compounds.¢ Determined by GC using chiral
stationary phases.

Scheme 1
COR' COR'
. 1a (20 mol%) . A
R/\/COR+ Br/\/\TMS &\ VAN
THEF, Cs,CO3 R™ 3 TMSR" 4 7" ~TMS

R =R'=Ph: 86% ee, 91% yield, 3/4 = 90/10;
R =p-CI-C¢Hy, R'=Ph: 89% ee, 94% yield, 3/4 =91/9.

ylide in our previous repof,a-methyl allylic and simple allylic
telluronium saltslb and 1c also worked well (entries 15 and 16).

In our previous study on ylide chemistry, we found that the
diastereoselectivity in the cyclopropanatiorogf-unsaturated esters
and amides with telluronium allylide could be tuned by reaction
conditions'* On the basis of this mechanistic insight, it is possible
to tune the diastereoselectivity of this reaction, and thus, it provides
a facile method for the synthesis of two optically pure isomers of
trisubstituted cyclopropanes with high selectivity using the same
chiral telluronium ylide, just by changing reaction conditions. As
expected, by optimizing the reaction conditions, it was found that
telluronium saltl could also react witl,5-unsaturated esters and
amides in the presence of LDA/LIBr to afford the desired products,
with different diastereoselectivities compared with using LITMP/
HMPA. In most casegj-aryl esters and amides gave good to high
diastereoselectivities and enantioselectivities. The reaction with
methyl crotonate was less enantioselective, and only 43% ee was
obtained. Optical purity of the produétip to 99% eg could be
enhanced by recrystallization in some caSeEhus,either one of
the two diastereomers could be enantioseletji synthesized at
will just by the choice of LITMP/HMPA or LDA/LiB€onsidering
that the telluride will be regenerated during the cyclopropanation,
we tried a catalytic process of this reaction. It was found that, in
the presence of 20 mol % of sdltin THF, chalcones gave the
desired cyclopropane with high diastereoselectivity in high yield
with up to 89% ee (Scheme 1).

To summarize, we have developed an efficient method and the
first example of catalytic ylide reaction for the enantioselective
synthesis of 1,3-disubstituted 2-vinylcyclopropanes with high
diastereoselectivity. Noticeably, two diastereomers could be ob-
tained at will with high enantioselectivity in some cases. Compared
with our previous report, both the yields and enantioselectivities
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